Access порт коммутатора что это

01. VLAN

VLAN (Virtual Local Area Network) — это технология, позволяющая объединять устройства в сети в сегменты на основе функций, приложений или требований управления. Виртуальные сегменты могут формироваться в независимости от физического расположения устройств. VLAN имеют те же свойства, что и физические LAN, за исключением того, что VLAN представляет собой логическое объединение, а не физическое. Поэтому во VLAN можно объединять устройства, независимо от того, где они находятся физически, а широковещательный, многоадресный и одноадресный трафик в одном VLAN отделен от других VLAN.

Стандарт IEEE 802.1Q определяет процедуру передачи трафика VLAN.

Основная идея технологии VLAN заключается в том, что большая локальная сеть может быть динамически разделена на отдельные широковещательные области, удовлетворяющие различным требованиям, каждый VLAN представляет собой отдельный широковещательный домен.

Рисунок 19.1 — логическое разделение сети на VLAN

Благодаря этим функциям технология VLAN предоставляет следующие возможности:

— Повышение производительности сети;
— Сохранение сетевых ресурсов;
— Оптимизация сетевого управления;
— Снижение стоимости сети;
— Повышение безопасности сети;

Ethernet-порт коммутатора может работать в трех режимах: Access, Trunk и Hybrid, каждый режим имеет различный метод обработки при передаче кадров с тэгом или без.
Порт в режиме Access относится только к одному VLAN, обычно используется для подключения конечных устройств, таких как персональный компьютер или WI-FI маршрутизатор в квартире или офисе.
Порт в режиме Trunk относится к нескольким VLAN и может принимать и отправлять кадры одновременно в нескольких VLAN. Обычно используется для соединения коммутаторов.
Порт в режиме Hybrid, также как и Trunk, относится к нескольким VLAN и может принимать и отправлять кадры одновременно в нескольких VLAN. Может использоваться как для подключения персональных компьютеров, так и для соединения коммутаторов.
Ethernet-порты в режимах Hybrid и Trunk могут принимать данные одним, но отправляют разными способами: Hybrid порт может отправлять пакеты в нескольких VLAN в нетэгированном виде, в то время как Trunk может отправлять трафик в нескольких VLAN только с тэгом, за исключением nativeVLAN.

1.2. Конфигурация VLAN

  1. Создание и удаление VLAN
  2. Назначение и удаление имени VLAN
  3. Назначение портов коммутатора для VLAN
  4. Выбор типа порта коммутатора
  5. Настройка порта в режиме Trunk
  6. Настройка порта в режиме Access
  7. Настройка порта в режиме Hybrid
  8. Включение/выключение vlan ingress rules глобально
  9. Настройка private vlan
  10. Настройка ассоциаций private vlan

1. Создание и удаление VLAN

Команда

Описание

! В режиме глобальной конфигурации

Cоздание VLAN, вход в режим конфигурирования VLAN

2. Назначение и удаление имени VLAN

Команда

Описание

! В режиме конфигурации VLAN

Назначение имени VLAN

Удаление имени VLAN

3. Назначение портов коммутатора для VLAN

Команда

Описание

no switchport interface

! В режиме конфигурации VLAN

Добавление портов коммутатора во VLAN

Удаление портов коммутатора из VLAN

4. Выбор типа порта коммутатора

Команда

Описание

! В режиме конфигурации порта

Установка текущего порта в режим Trunk, Access или Hybrid

5. Настройка порта в режиме Trunk

Команда

Описание

switchport trunk allowed vlan

no switchport trunk allowed vlan

! В режиме конфигурации порта

Добавление VLAN в Trunk

Вернуть значение по-умолчанию

switchport trunk native vlan

no switchport trunk native vlan

! В режиме конфигурации порта

установка PVID для интерфейса

возвращение значений по-умолчанию

6. Настройка порта в режиме Access

Команда

Описание

switchport access vlan

no switchport access vlan

! В режиме конфигурации порта

Добавление текущего порта в определенный VLAN.

Вернуть значение по-умолчанию

7. Настройка порта в режиме Hybrid

Команда

Описание

switchport hybrid allowed vlan

no switchport hybrid allowed vlan

! В режиме конфигурации порта

Создание/удаление VLAN, вход в режим конфигурирования VLAN

switchport hybrid native vlan

no switchport hybrid native vlan

! В режиме конфигурации порта

установка PVID для интерфейса

возвращение значений по-умолчанию

8. Включение/выключение vlan ingress rules глобально

Команда

Описание

vlan ingress enable

no ingress disable

! В режиме конфигурации порта

Включение VLAN ingress rules

выключение VLAN ingress rules

9. Настройка private vlan

Команда

Описание

no private vlan

! В режиме конфигурации VLAN

Настройка текущего vlan в качестве Private VLAN.

Возвращение настроек по-умолчанию

10. Настройка ассоциаций private vlan

Команда

Описание

private vlan association

no private vlan association

! В режиме конфигурации VLAN

Выбрать vlan для ассоциации с private vlan

1.3. Пример конфигурации VLAN

Сценарий:

Рисунок 19.2 — Топология для примера настройки VLAN

Представленная на рисунке 19.2, сеть разделена на 3 VLAN: VLAN2, VLAN100, VLAN200 по используемым приложениям, а также по соображениям безопасности. Эти VLAN расположены в разных локациях: A и B. Каждый из двух коммутаторов размещен в своей локации. Устройства в разных локациях могут быть объединены виртуальную локальную сеть, если трафик будет передаваться между коммутаторами A и B.

Читайте также:  Как заменить радиатор на бмв 520

пункт конфигурации

описание

Коммутатор A и B: порт 2-4

Коммутатор A и B: порт 5-7

Коммутатор A и B: порт 8-10

Коммутатор A и B: порт 11

Соедините порты в режиме trunk на коммутаторах A и B друг с другом, подключите остальные сетевые устройства к соответствующим портам.

1.3.1. Пример конфигурации Hybrid порта

Сценарий:


Рисунок 19.3 — Пример применения Hybrid Port

ПК 1 подключен к интерфейсу Ethernet 1/0/7 Коммутатора “Switch B”, ПК2 подключен к интерфейсу Ethernet 1/0/9 коммутатора “Switch B”, интерфейс Ethernet 1/0/10Switch A” подключен к порту Ethernet 1/0/10 коммутатора “Switch B
Для безопасности ПК1 и ПК2 не должны иметь возможность взаимодействовать друг с другом, но должны иметь доступ к сетевым ресурсам, находящимся за “Switch A”.

Необходимо настроить коммутаторы следующим образом:

Порт

Тип

PVID

VLAN, которые может пропускать

Источник

Записки IT специалиста

Технический блог специалистов ООО»Интерфейс»

  • Главная
  • VLAN для начинающих. Общие вопросы

VLAN для начинающих. Общие вопросы

Виртуализацией сегодня уже никого не удивить. Эта технология прочно вошла в нашу жизнь и помогает более эффективно использовать имеющиеся ресурсы, а также обеспечивает достаточную гибкость в изменении существующей конфигурации, позволяя перераспределять ресурсы буквально налету. Не обошла виртуализация и локальные сети. Технология VLAN (Virtual Local Area Network) позволяет создавать и гибко конфигурировать виртуальные сети поверх физической. Это позволяет реализовывать достаточно сложные сетевые конфигурации без покупки дополнительного оборудования и прокладки дополнительных кабелей.

Научиться настраивать MikroTik с нуля или систематизировать уже имеющиеся знания можно на углубленном курсе по администрированию MikroTik. Автор курса, сертифицированный тренер MikroTik Дмитрий Скоромнов, лично проверяет лабораторные работы и контролирует прогресс каждого своего студента. В три раза больше информации, чем в вендорской программе MTCNA, более 20 часов практики и доступ навсегда.

Прежде чем продолжить сделаем краткое отступление о работе локальных сетей. В данном контексте мы будем говорить об Ethernet-сетях описанных стандартом IEEE 802.3, куда входят всем привычные проводные сети на основе витой пары. Основой такой сети является коммутатор (свич, switch), который работает на втором уровне сетевой модели OSI (L2).

Второй уровень, он же канальный, работает в пределах одного сегмента сети и использует для адресации уникальные физические адреса оборудования — MAC-адреса. Передаваемая между узлами информация разделяется на специальные фрагменты — Ethernet-кадры (фреймы, frame), которые не следует путать с IP-пакетами, которые находятся на более высоком уровне модели OSI и передаются внутри Ethernet-кадров. Таким образом коммутатор ничего не знает об IP-адресах и никак эту информацию в работе не учитывает.

Коммутатор анализирует заголовки каждого входящего кадра и заносит соответствие MAC-адреса источника в специальную MAC-таблицу, после чего кадр, адресованный этому узлу, будет направляться сразу на определенный порт, если МАС-адрес получателя неизвестен, то кадр отправляется на все порты устройства. После получения ответа коммутатор привяжет MAC-адрес к порту и будет отправлять кадры только через него.

Этим достигается возможность одновременной передачи данных по нескольким портам одновременно и увеличивается безопасность сети, так как данные будут передаваться только на требуемый порт. Одновременно передавать данные через порт коммутатора может только один узел сети. Попытка одновременно передавать несколько кадров в одном сегменте сети называется коллизией, а такой сегмент — доменом коллизий. Чем больше устройств в домене коллизий, тем медленнее работает сеть.

Коммутатор позволяет разделять домен коллизий на отдельные домены по числу портов, таким образом каждый порт коммутатора — это отдельный домен коллизий и в каждом из них данные могут передаваться одновременно, не мешая друг другу.

Совокупность доменов коллизии, соединенных на втором уровне, является широковещательным доменом, если говорить проще, то широковещательный домен — это совокупность всех портов коммутаторов соединенных в один сегмент.

Как мы уже говорили выше, к широковещанию прибегает сам коммутатор, когда получает кадр MAC-адрес которого отсутствует в MAC-таблице, а также узлы сети, отправляя кадры на адрес FF:FF:FF:FF:FF:FF, такие кадры будут доставлены всем узлам сети в широковещательном сегменте.

А теперь вернемся немного назад, к доменам коллизий и вспомним о том, что в нем может передаваться только один кадр одновременно. Появление широковещательных кадров снижает производительность сети, так как они доставляются и тем, кому надо и тем, кому не надо. Делая невозможным в это время передачу целевой информации. Кроме того, записи в MAC-таблице имеют определенное время жизни, по окончании которого они удаляются, что снова приводит к необходимости рассылки кадра на все порты устройства.

Чем больше в сети узлов, тем острее стоит проблема широковещания, поэтому широковещательные домены крупных сетей принято разделять. Это уменьшает количество паразитного трафика и увеличивает производительность, а также повышает безопасность, так как ограничивает передачу кадров только своим широковещательным доменом.

Как это можно сделать наиболее простым образом? Установить вместо одно коммутатора два и подключить каждый сегмент к своему коммутатору. Но это требует покупки нового оборудования и, возможно, прокладки новых кабельных сетей, поэтому нам на помощь приходит технология VLAN.

Читайте также:  Акб не заряжается от зарядного устройства причины что делать

Данная технология описана стандартом 802.1Q и предусматривает добавление к заголовкам кадра дополнительного поля, которое содержит в том числе определенную метку (тег) с номером виртуальной сети — VLAN ID, всего можно создать 4094 сети, для большинства применений этого достаточно.

Давайте рассмотрим, как работает коммутатор с виртуальными сетями. В нашем примере мы возьмем условный 8-портовый коммутатор и настроим на нем три порта на работу с одним VLAN, а еще три порта с другим.

Каждый VLAN обозначается собственным номером, который является идентификатором виртуально сети. Порты, которые не настроены ни для какого VLAN считаются принадлежащими Native VLAN, по умолчанию он обычно имеет номер 1 (может отличаться у разных производителей), поэтому не следует использовать этот номер для собственных сетей. Порты, настроенные нами для работы с VLAN, образуют как-бы два отдельных виртуальных коммутатора, передавая кадры только между собой. Каким образом это достигается?

Как мы уже говорили выше, каждый кадр 802.1Q содержит дополнительное поле, в котором содержится тег — номер виртуальной сети. При входе Ethernet-кадра в коммутатор с поддержкой VLAN (такой трафик называется входящим — ingres) в его состав добавляется поле с тегом. При выходе из коммутатора (исходящий трафик — egress), данное поле из кадра удаляется, т.е. тег снимается. Все кадры внутри коммутатора являются тегированными. Если трафик пришел на порт, не принадлежащий ни одному VLAN, он получает тег с номером Native VLAN.

В порт, принадлежащий определенному VLAN, могут быть отправлены только пакеты с тегом, принадлежащим этому VLAN, остальные будут отброшены. Фактически мы только что разделили единый широковещательный домен на несколько меньших и трафик из одного VLAN никогда не попадет в другой, даже если эти подсети будут использовать один диапазон IP. Для конечных узлов сети такой коммутатор нечем ни отличается от обычного. Вся обработка виртуальных сетей происходит внутри.

Такие порты коммутатора называются портами доступа или нетегированными портами (access port, untagged). Обычно они используются для подключения конечных узлов сети, которые не должны ничего знать об иных VLAN и работать в собственном сегменте.

А теперь рассмотрим другую картину, у нас есть два коммутатора, каждый из которых должен работать с обоими VLAN, при этом соединены они единственным кабелем и проложить дополнительный кабель невозможно. В этом случае мы можем настроить один или несколько портов на передачу тегированного трафика, при этом можно передавать как трафик любых VLAN, так и только определенных. Такой порт называется магистральным (тегированным) или транком (trunk port, tagged).

Магистральные порты используются для соединения сетевого оборудования между собой, к конечным узлам сети тегированный трафик обычно не доставляется. Но это не является догмой, в ряде случаев тегированный трафик удобнее доставить именно конечному узлу, скажем, гипервизору, если он содержит виртуальные машины, принадлежащие разным участкам сети.

Так как кадр 802.1Q отличается от обычного Ehternet-кадра, то работать с ним могут только устройства с поддержкой данного протокола. Если на пути тегированного трафика попадется обычный коммутатор, то такие кадры будут им отброшены. В случае доставки 802.1Q кадров конечному узлу сети такая поддержка потребуется от сетевой карты устройства. Если на магистральный порт приходит нетегированный трафик, то ему обычно назначается Native VLAN.

Кроме указанных двух портов доступа существует еще одна разновидность — гибридный порт (hybrid port), его реализация и наименование у разных производителей сетевого оборудования может быть разным, но суть от этого не меняется. Такой порт передает как тегированный, так и нетегированный трафик. Для этого в его настройках указывается Default VLAN ID и для всех кадров этого VLAN данный порт работает как порт доступа, т.е для исходящего трафика указанного VLAN тег снимается, а входящему кадру без тега, наоборот, присваивается. Трафик остальных VLAN передается с тегами.

Для чего это нужно? Наиболее частое применение — это IP-телефоны со встроенным коммутатором, которые умеют работать с тегированным трафиком, но не умеют передавать его дальше. В этом случае в качестве VLAN ID по умолчанию устанавливается номер VLAN в котором расположены пользовательские ПК, а для телефона на этот же порт добавляется тегированный трафик VLAN для телефонии.

Все это время мы говорили только о VLAN, не поднимая вопроса: как попасть из одного VLAN в другой. Если продолжать рассматривать канальный уровень — то никак. Каждый VLAN мы можем рассматривать как отдельный физический коммутатор, а магистральный канал — как жгут кабелей между ними. Только все это сделано виртуально, на более высоком уровне абстракции, чем L1 — физический уровень, который как раз представлен кабелями и физическим оборудованием.

Читайте также:  Как проверить дату производства акб exide

Если мы соединим два физических коммутатора кабелем — то получим расширение широковещательного домена на все порты этих устройств, а это совсем не то, что нам нужно. В тоже время сетевые устройства работают на более высоких уровнях модели ОSI, начиная с сетевого — L3. Здесь уже появляется понятие IP-адреса и IP-сетей. Если смотреть на VLAN с этого уровня, то они ничем не отличаются от физических сегментов сетей. А что мы делаем, когда нам нужно попасть из одной сети в другую? Ставим маршрутизатор.

Маршрутизатор или роутер — устройство, работающее на третьем уровне модели OSI и умеющее выполнять маршрутизацию трафика, т.е. поиск оптимального пути для доставки его получателю. И здесь мы говорим уже не о Ethernet-кадрах, а об IP-пакетах. Маршрутизация между VLAN называется межвлановой (межвланной) маршрутизацией (InterVLAN Routing), но, по сути, она ничем не отличается от обычной маршрутизации между IP-подсетями.

Для обеспечения связи между сетями в нашей схеме появляется новая сущность — маршрутизатор, как правило к нему от одного из коммутаторов идет магистральный канал (транк), содержащий все необходимые VLAN, эта схема называется роутер на палочке (леденец, Router-on-a-Stick).

Как работает эта схема? Допустим ПК из синей сети (VLAN ID 40), хочет обратиться к другому узлу синей сети. IP-адрес адресата ему известен, но для того, чтобы отправить кадр нужно знать физический адрес устройства. Для этого ПК источник делает широковещательный ARP-запрос, передавая в нем нужный ему IP-адрес, в ответ на него обладатель этого IP сообщит ему собственный MAC-адрес.

Все кадры, попадающие с порта доступа в коммутатор, получают тег с VLAN ID 40 и могут покинуть коммутатор только через порты, принадлежащие этому VLAN или транк. Таким образом любые широковещательные запросы не уйдут дальше своего VLAN. Получив ответ узел сети формирует кадр и отправляет его адресату. Далее в дело снова вступают коммутаторы, сверившись с MAC-таблицей они отправляют кадр в один из портов, который будет либо принадлежать своему VLAN, либо будет являться магистральным. В любом случае кадр будет доставлен по назначению без использования маршрутизатора, только через коммутаторы.

Совсем иное дело, если узел одного из VLAN хочет получить доступ к узлу другого VLAN. В нашем случае узел из красной сети (VLAN ID 30) хочет получить доступ к узлу синей сети (VLAN ID 40). Узел источник знает IP-адрес адресата и также знает, что этот адрес не принадлежит его сети. Поэтому он формирует IP-пакет на адрес основного шлюза сети (роутера), помещает его в Ethernet-кадр и отправляет на порт коммутатора. Коммутатор добавляет к кадру тег с VLAN ID 30 и доставляет его роутеру.

Роутер получает данный кадр, извлекает из него IP-пакет и анализирует заголовки. Обнаружив адрес назначения, он сверяется с таблицей маршрутизации и принимает решение куда отправить данный пакет дальше. После чего формируется новый Ethernet-кадр, который получает тег с новым VLAN ID сети-получателя в него помещается IP-пакет, и он отправляется по назначению.

Таким образом любой трафик внутри VLAN доставляется только с помощью коммутаторов, а трафик между VLAN всегда проходит через маршрутизатор, даже если узлы находятся в соседних физических портах коммутатора.

Говоря о межвлановой маршрутизации нельзя обойти вниманием такие устройства как L3 коммутаторы. Это устройства уровня L2 c некоторыми функциями L3, но, в отличие от маршрутизаторов, данные функции существенно ограничены и реализованы аппаратно. Этим достигается более высокое быстродействие, но пропадает гибкость применения. Как правило L3 коммутаторы предлагают только функции маршрутизации и не поддерживают технологии для выхода во внешнюю сеть (NAT) и не имеют брандмауэра. Но они позволяют быстро и эффективно осуществлять маршрутизацию между внутренними сегментами сети, в том числе и между VLAN.

Маршрутизаторы предлагают гораздо большее число функций, но многие из них реализуются программно и поэтому данный тип устройств имеет меньшую производительность, но гораздо более высокую гибкость применения и сетевые возможности.

При этом нельзя сказать, что какое-то из устройств хуже, каждое из них хорошо на своем месте. Если мы говорим о маршрутизации между внутренними сетями, в том числе и о межвлановой маршрутизации, то здесь предпочтительно использовать L3 коммутаторы с их высокой производительностью, а когда требуется выход во внешнюю сеть, то здесь нам потребуется именно маршрутизатор, с широкими сетевыми возможностями.

Научиться настраивать MikroTik с нуля или систематизировать уже имеющиеся знания можно на углубленном курсе по администрированию MikroTik. Автор курса, сертифицированный тренер MikroTik Дмитрий Скоромнов, лично проверяет лабораторные работы и контролирует прогресс каждого своего студента. В три раза больше информации, чем в вендорской программе MTCNA, более 20 часов практики и доступ навсегда.

Помогла статья? Поддержи автора и новые статьи будут выходить чаще:

Или подпишись на наш Телеграм-канал:

Источник

Поделиться с друзьями
АвтоМотоВики