Вертикальный и горизонтальный редукторы
Подписка на рассылку
По расположению осей вращения тихоходного и быстроходного вала в пространстве все многообразие серий и типоразмеров механических редукторов, выпускаемых российскими и зарубежными производителями, подразделяется на горизонтальные и вертикальные.
Горизонтальный редуктор
К первой группе относятся механизмы, у которых оси лежат в одной горизонтальной плоскости, при этом они могут быть как параллельными, так и пересекающимися под углом 90°. Под такую комбинацию свойств попадают цилиндрические и коническо-цилиндрические агрегаты.
Цилиндрические горизонтальные редукторы устанавливаются на конвейерных лентах, ковшовых подъемниках, тяговых лебедках, а также других механизмах общепромышленного назначения, и являются наиболее многочисленной группой преобразующих устройств, входящих в эту группу. Это обусловлено большим количеством выпускаемых серий, которые различаются между собой не только по количеству ступеней и по типу зацепления, но и по форме продольной линии зуба относительно оси вращения.
В зависимости от назначения редукторов, в них устанавливаются колеса с эвольвентным типом зацепления, имеющие прямые, косые и шевронные зубья, а также круговыми зубьями с зацеплением Новикова. Среди самых распространенных серий можно выделить Ц2У, ЦДН, Ц3У, РК, РМ.
Коническо-цилиндрические редукторы относятся к устройствам комбинированного типа, в которых ось тихоходного вала расположена перпендикулярно оси быстроходного вала, а цилиндрическая передача совмещена с конической. Это дает возможность обеспечить плавность хода приводимого устройства, особенно при высоких нагрузках. Редукционными механизмами этого типа оснащаются экструдеры, скребковые транспортеры и шахтные тягачи. Наиболее распространенными сериями редукторов этого типа российского производства являются устройства КЦ, а импортного – К, КА.
Главным преимуществом горизонтальных редукторов, помимо высокого КПД, устойчивости к повышенным нагрузкам, а также низкой степени нагрева в процессе эксплуатации является удобство ремонта и технического обслуживания, в том числе возможность снятия верхней крышки корпуса без слива масла. Среди недостатков можно выделить высокий уровень шума во время работы.
Вертикальный редуктор
В механизмах этой группы приводной и выходной валы редукторов параллельны между собой и расположены в вертикальной плоскости, то есть расположены один под другим. Это характерно только для редукторов с цилиндрической передачей. Цилиндрические вертикальные редукторы монтируются на подъемных кранах различного типа и назначения для передвижения грузовых тележек, а также для привода подъемных барабанов. В таких устройствах устанавливаются косозубые и шевронные зубчатые колеса с эвольвентным типом зацепления. Некоторые серии редукционных механизмов служат для комплектации кран-балок и тельферов.
Редуктор крановый вертикальный, также как и горизонтальные редукционные устройства, имеет высокий КПД, низкую степень нагрева и устойчив к повышенным нагрузкам. К его недостаткам, кроме повышенного шума, относится сложность технического обслуживания. Кроме того, перед ремонтными работами в обязательном порядке необходимо выполнить слив масла.
К отдельной категории можно отнести механизмы, у которых быстроходный и тихоходный валы имеют общую ось вращения. Таким свойством обладают планетарные, волновые и соосные цилиндрические редукторы. Особенностью этих устройств является универсальность применения. Соосные редукционные механизмы могут устанавливаться в любом пространственном положении, что делает их востребованными в различных отраслях промышленности, включая высокоточное производство.
Очень часто такие устройства изначально комплектуются приводным двигателем. Мотор-редуктор с вертикальными или горизонтальными валами является оптимальным решением, позволяющим сократить время монтажа и ввода оборудования в эксплуатацию.
Источник
Кто в масле катается
Обзор основных классов механических редукторов
Иллюстрация: Яковлев Артем / edu.ascon.ru
Недавно европеец Оскар Ван Девентер напечатал на 3D-принтере редуктор с экстремально высоким передаточным числом — 11373076. В этом механизме изобретатель соединил два планетарных редуктора. При увеличении количества зубцов шестеренок, использованных в механизме, передаточное число можно увеличить и до 1141624705. Чем такой редуктор может быть полезен, Ван Девентер не объяснил, рассказав только, что при его помощи обычной стоматологической бормашиной можно сдвинуть локомотив. Правда, с очень небольшой скоростью. Вдохновившись разработкой европейца мы решили разобраться в основных типах механических редукторов.
Редуктор представляет собой механизм, позволяющий передавать и преобразовывать крутящий момент с одного вала на другой. Если такой механизм преобразует высокую угловую скорость ведущего вала в более низкую ведомого, его называют демультипликатором, а если наоборот — мультипликатором. Впрочем, так сложилось, что термин демультипликатор используется крайне редко, а устройство, понижающее угловую скорость, называют просто редуктором. В зависимости от типа такой механизм может состоять из нескольких типов шестерен, червяков и валов.
Основными характеристиками редукторов являются передаваемая мощность, угловые скорости и количество валов, а также передаточное число. Любые редукторы уменьшают передаваемую мощность за счет потерь на механическую передачу крутящего момента — из-за трения, массивности конструкции, нагрузок на валах. Угловые скорости на ведущем валу и ведомом могут различаться в десятки, сотни и тысяч раз благодаря передаточному числу редуктора.
Передаточным числом называется соотношение количества зубьев шестеренки на ведущем валу к их числу у шестеренки на ведомом. Оно записывается целым или дробным числом и фактически обозначает, сколько именно раз должен провернуться ведущий вал, чтобы ведомый совершил один полный оборот. В случае с редуктором Ван Девентера, ведущий вал необходимо повернуть 11 миллионов 373 тысячи 76 раз. Только тогда ведомый вал совершит один полный оборот.
В целом редукторы позволяют увеличить усилие на ведомом валу, при этом потратив часть мощности на ведущем и уменьшив скорость вращения. Эту особенность используют тогда, когда необходимо работать с большими нагрузками, например, при помощи относительно маломощного мотора приводить в движение большой по массе транспорт. Например, двигатель седельного тягача КамАЗ-65225 мощностью 400 лошадиных сил может через коробку передач (многоступенчатая разновидность редуктора) сдвигать автопоезд полной массой до 75 тонн.
Сегодня редукторы используются во многих отраслях: на автомобилях, в самолетах и вертолетах, в поездах, станках, велосипедах, то есть везде, где нужно передавать вращательный момент с одного агрегата на другой. Механизмы, позволяющие передавать крутящий момент с одного вала на другой, принято делить на пять наиболее распространенных основных классов: цилиндрические, конические, червячные, планетарные и комбинированные. В последних могут сочетаться несколько типов редукторов.
Иллюстрация: Чабанный Александр / edu.ascon.ru
Цилиндрический редуктор представляет собой механизм, в котором ведущий вал и ведомый находятся в параллельных плоскостях. Передача в них осуществляется с большей шестеренки с прямыми или косыми зубцами на меньшую, по своей форме напоминающую цилиндр. Такие редукторы делятся на несколько подтипов: вертикальные (валы находятся друг над другом) и горизонтальные. Цилиндрические редукторы бывают одно-, двух-, трех- и четырехступенчатыми в зависимости от количества шестерен, установленных между ведущим и ведомым валами.
Цилиндрические редукторы имеют очень высокий коэффициент полезного действия, который может достигать 98 процентов, то есть потеря мощности при передаче вращательного момента с одного вала на другой будет относительно небольшой. Благодаря высокому коэффициенту полезного действия в цилиндрических редукторах практически отсутствует эффект рассеивания передаваемой энергии, а значит рабочие элементы редуктора практически не нагреваются.
Такие механизмы используются преимущественно в различных металлорежущих станках, станках для обработки древесины, измельчителях и бетономешалках, на мельницах. Цилиндрические редукторы малочувствительны к рывковым нагрузкам, выдерживают большое количество пусков и остановок. При этом они лишены самоторможения, то есть, приложив определенное усилие на ведомый вал, можно провернуть ведущий. При этом конструкция таких редукторов достаточно шумная, а сами они обладают низким передаточным числом.
Иллюстрация: Manuel Neuer / grabcad.com
Конический редуктор используется для передачи вращательного момента с ведущего вала на ведомый в случае, если плоскости их осей пересекаются. В них используются конические шестеренки. Такие механизмы имеют меньшую надежность по сравнению с цилиндрическими, но обладают довольно высоким коэффициентом полезного действия, который может достигать 95 процентов. Благодаря конической конструкции шестерен таких редукторов, они могут иметь несколько выходных валов, оси вращения которых, например, можно расположить в виде креста.
В современных конических редукторах как правило используется колесное соединение — внутри них на концах валов установлены конические шестеренки, которые своими конусами опираются на другую шестеренку. Плоскость последней находится в одной плоскости с плоскостями осей валов. В этом случае, если колесное соединение одно, ведомый и ведущий валы будут вращаться в одном направлении. Конические редукторы нередко используются для изменения направления передачи.
Как правило диапазон передаточных чисел в конических редукторах составляет от одного до пяти, но углы наклона оси ведомого вала к ведущему могут быть самыми разнообразными. Такие механизмы, как и цилиндрические, чаще всего используются в различных станках, например, сверлильных. Как и цилиндрические, конические редукторы обратимы, то есть вращая их ведомый вал, можно провернуть ведущий. Однако, из-за особенностей своей конструкции, конические редукторы могут иногда заедать.
Иллюстрация: Исаков Сергей / edu.ascon.ru
Червячные редукторы получили название от типа используемой в них передачи. В самом простом исполнении эти механизмы состоят из червячного колеса (шестеренки с косыми зубцами) и самого червяка. Последний представляет собой цилиндр с нанесенной на него резбой, которая при вращении напоминает червяка. В таком редукторе ведущий вал приводит в движение червяка, резьба которого сдвигает косые зубья червячного колеса, заставляя его вращаться.
Редукторы с червячной передачей придумали как альтернативу механизмам с обыкновенной зубчатой передачей, например, цилиндрическим. Они обладают гораздо меньшими размерами, но имеют большее передаточное число. Например, при двухзаходном червяке (имеет две параллельных резьбы) и червячном колесе с сотней зубьев передаточное число составит 50. Это означает, что ведущий вал должен будет совершить 50 полных оборотов, чтобы ведомый вал повернулся один раз.
Червячные редукторы имеют очень высокий коэффициент самоторможения. Это означает, что приложив усилие к ведомому валу провернуть ведущий скорее всего не удастся. Кроме того, червячные редукторы имеют относительно невысокий коэффициент полезного действия (от 70 до 92 процентов) и крайне чувствительны к смазке. Их используют для передачи малой мощности в условиях, когда нет достаточного места для размещения цилиндрического или конического редукторов. Чаще всего червячные редукторы используют для привода конвейеров или ворот.
Иллюстрация: Филимонов Илья / edu.ascon.ru
Планетарный редуктор — это уже более сложное механическое устройство, получившее свое название из-за способа размещения ведущей, передаточных и ведомой шестерен. Механизм состоит из солнечной шестерни, расположенной в центре конструкции, сателлитов (меньших шестеренок) и эпицикла (коронной шестерни), расположенной на периферии. Вращение коронной шестерни осуществляется солнечной через сателлиты. Последние механически соединяются водилом, кольцом со штырями, на которые и крепятся сателлиты.
Особенностью планетарного редуктора является то, что вращение можно подводить к любому из его элементов и снимать с любого другого. При этом третий элемент необходимо остановить. Например, вращение можно подвести к одному из сателлитов, а снимать его с коронной шестерни. В этом случае солнечная шестерня должна быть неподвижной. При подведении вращения к солнечной шестерне и снятия его с коронной в редукторе неподвижным остается водило. В некоторых редукторах водила нет.
Благодаря изменению схемы подвода и снятия вращения можно не меняя сам редуктор изменять его передаточные числа в очень широком диапазоне. Именно по этой причине, планетарные редукторы, пожалуй, могут иметь наибольшие передаточные числа среди таких механизмов других классов. Коэффициент самоторможения у планетарных редукторов зависит от их передаточного числа, но при вращении ведомого вала все же можно добиться и вращения ведущего.
Планетарные редукторы коробки переключения передач во втулке заднего колеса велосипеда.
Источник
ГОРИЗОНТАЛЬНЫЕ И ВЕРТИКАЛЬНЫЕ РЕДУКТОРЫ (РОССИЙСКАЯ МЕТОДИКА)
Выбор любого редуктора осуществляется в три этапа:
1. Выбор типа редуктора
2. Выбор габарита (типоразмера) редуктора и его характеристик.
3. Проверочные расчеты
1. Выбор типа редуктора
1.1 Исходные данные:
Кинематическая схема привода с указанием всех механизмов подсоединяемых к редуктору, их пространственного расположения относительно друг друга с указанием мест крепления и способов монтажа редуктора.
1.2 Определение расположения осей валов редуктора в пространстве.
Цилиндрические редукторы:
Ось входного и выходного вала редуктора параллельны друг другу и лежат только в одной горизонтальной плоскости – горизонтальный цилиндрический редуктор.
Ось входного и выходного вала редуктора параллельны друг другу и лежат только в одной вертикальной плоскости – вертикальный цилиндрический редуктор.
Ось входного и выходного вала редуктора может находиться в любом пространственном положении при этом эти оси лежат на одной прямой (совпадают) – соосный цилиндрический или планетарный редуктор.
Коническо-цилиндрические редукторы:
Ось входного и выходного вала редуктора перпендикулярны друг другу и лежат только в одной горизонтальной плоскости.
Червячные редукторы:
Ось входного и выходного вала редуктора может находиться в любом пространственном положении, при этом они скрещиваются под углом 90 градусов друг другу и не лежат в одной плоскости – одноступенчатый червячный редуктор.
Ось входного и выходного вала редуктора может находиться в любом пространственном положении, при этом они параллельны друг другу и не лежат в одной плоскости, либо они скрещиваются под углом 90 градусов друг другу и не лежат в одной плоскости – двухступенчатый редуктор.
1.3 Определение способа крепления, монтажного положения и варианта сборки редуктора.
Способ крепления редуктора и монтажное положение (крепление на фундамент или на ведомый вал приводного механизма) определяют по приведенным в каталоге техническим характеристикам для каждого редуктора индивидуально.
Вариант сборки определяют по приведенным в каталоге схемам. Схемы «Вариантов сборки» приведены в разделе «Обозначение редукторов».
1.4 Дополнительно при выборе типа редуктора могут учитываться следующие факторы
- наиболее низкий — у червячных редукторов
- наиболее высокий — у цилиндрических и конических редукторов
2) Коэффициент полезного действия
- наиболее высокий — у планетарных и одноступенчатых цилиндрических редукторах
- наиболее низкий — у червячных, особенно двухступенчатых
Червячные редукторы предпочтительно использовать в повторно-кратковременных режимах эксплуатации
3) Материалоемкость для одних и тех же значений крутящего момента на тихоходном валу
- наиболее высокая — у конических
- наиболее низкая — у планетарных одноступенчатых
4) Габариты при одинаковых передаточных числах и крутящих моментах:
- наибольшие осевые — у соосных и планетарных
- наибольшие в направлении перпендикулярном осям – у цилиндрических
- наименьшие радиальные – к планетарных.
5) Относительная стоимость руб/(Нм) для одинаковых межосевых расстояний:
- наиболее высокая — у конических
- наиболее низкая – у планетарных
2. Выбор габарита (типоразмера) редуктора и его характеристик
2.1. Исходные данные
Кинематическая схема привода, содержащая следующие данные:
- вид приводной машины (двигателя);
- требуемый крутящий момент на выходном валу Ттреб, Нхм, либо мощность двигательной установки Ртреб, кВт;
- частота вращения входного вала редуктора nвх, об/мин;
- частота вращения выходного вала редуктора nвых, об/мин;
- характер нагрузки (равномерная или неравномерная, реверсивная или нереверсивная, наличие и величина перегрузок, наличие толчков, ударов, вибраций);
- требуемая длительность эксплуатации редуктора в часах;
- средняя ежесуточная работа в часах;
- количество включений в час;
- продолжительность включений с нагрузкой, ПВ %;
- условия окружающей среды (температура, условия отвода тепла);
- продолжительность включений под нагрузкой;
- радиальная консольная нагрузка, приложенная в середине посадочной части концов выходного вала F вых и входного вала F вх;
2.2. При выборе габарита редуктора производиться расчет следующих параметров:
2.2.1. Передаточное число
Наиболее экономичной является эксплуатация редуктора при частоте вращения на входе менее 1500 об/мин, а с целью более длительной безотказной работы редуктора рекомендуется применять частоту вращения входного вала менее 900 об/мин.
Передаточное число округляют в нужную сторону до ближайшего числа согласно таблицы 1.
По таблице отбираются типы редукторов удовлетворяющих заданному передаточному числу.
2.2.2. Расчетный крутящий момент на выходном валу редуктора
Трасч =Ттреб х Креж , (2)
Ттреб — требуемый крутящий момент на выходном валу, Нхм (исходные данные, либо формула 3)
Креж – коэффициент режима работы
При известной мощности двигательной установки:
Ттреб= (Ртреб х U х 9550 х КПД)/ nвх , (3)
Ртреб — мощность двигательной установки, кВт
nвх — частота вращения входного вала редуктора (при условии что вал двигательной установки напрямую без дополнительной передачи передает вращение на входной вал редуктора), об/мин
U – передаточное число редуктора, формула 1
КПД — коэффициент полезного действия редуктора
Коэффициент режима работы определяется как произведение коэффициентов:
Для зубчатых редукторов:
Креж=К1 х К2 х К3 х КПВ х Крев , (4)
Для червячных редукторов:
Креж=К1 х К2 х К3 х КПВ х Крев х Кч , (5)
К1 – коэффициент типа и характеристик двигательной установки, таблица 2
К2 – коэффициент продолжительности работы таблица 3
К3 – коэффициент количества пусков таблица 4
КПВ – коэффициент продолжительности включений таблица 5
Крев – коэффициент реверсивности , при нереверсивной работе Крев=1,0 при реверсивной работе Крев=0,75
Кч – коэффициент, учитывающий расположение червячной пары в пространстве. При расположении червяка под колесом Кч = 1,0, при расположении над колесом Кч = 1,2. При расположении червяка сбоку колеса Кч = 1,1.
2.2.3. Расчетная радиальная консольная нагрузка на выходном валу редуктора
Fвых.расч = Fвых х Креж , (6)
F вых — радиальная консольная нагрузка, приложенная в середине посадочной части концов выходного вала (исходные данные), Н
Креж — коэффициент режима работы (формула 4,5)
3. Параметры выбираемого редуктора должны удовлетворять следующим условиям:
1) Тном > Трасч, (7)
Тном – номинальный крутящий момент на выходном валу редуктора, приводимый в данном каталоге в технических характеристиках для каждого редуктора, Нхм
Трасч — расчетный крутящий момент на выходном валу редуктора (формула 2), Нхм
2) Fном > Fвых.расч , (8)
Fном – номинальная консольная нагрузка в середине посадочной части концов выходного вала редуктора, приводимая в технических характеристиках для каждого редуктора, Н.
Fвых.расч — расчетная радиальная консольная нагрузка на выходном валу редуктора (формула 6), Н.
Вам нужно больше информации?
Напишите свой вопрос и наши менеджеры перезвонят Вам в максимально короткое время
Источник