Воздействие прилагаемое к рычагу что это

Содержание
  1. Воздействие, прилагаемое к рычагу
  2. Альтернативные вопросы в кроссвордах для слова усилие
  3. Определение слова усилие в словарях
  4. Примеры употребления слова усилие в литературе.
  5. Воздействие на рычаг слово из 6 букв
  6. Ответ
  7. Состав слова
  8. Другие варианты определения
  9. Воздействие, прилагаемое к рычагу слово из 6 букв
  10. Ответ
  11. Состав слова
  12. Другие варианты определения
  13. Правило рычага. Формулировка и формула
  14. Рычаг в физике
  15. Когда человечество начало использовать рычаг?
  16. Понятие о моменте силы
  17. Моменты сил и правило рычага
  18. Выигрыш и проигрыш в использовании рычага
  19. Виды рычагов
  20. Простой механизм блок
  21. Решение задачи
  22. Рычаг в физике — виды, формулы и определения с примерами
  23. Можно ли изменять значения силы
  24. Что такое рычаг
  25. Как уравновесить рычаг
  26. Что такое момент силы
  27. Где используют рычаги
  28. Условие равновесия рычага и момент силы
  29. Основы статики и равновесие рычага
  30. Условия равновесия тел. Устойчивое и неустойчивое равновесие
  31. Примеры решения задач на равновесие рычага
  32. Пример №1
  33. Пример №2
  34. Пример №3

Воздействие, прилагаемое к рычагу

Ответ на вопрос «Воздействие, прилагаемое к рычагу «, 6 (шесть) букв:
усилие

Альтернативные вопросы в кроссвордах для слова усилие

Определение слова усилие в словарях

Толковый словарь русского языка. Д.Н. Ушаков Значение слова в словаре Толковый словарь русского языка. Д.Н. Ушаков
усилия, ср. Напряжение силы (физической, душевной, умственной) для достижения чего-н. Мышечное усилие. Волевое усилие. Приложить все усилия для чего-н. Сделать усилие над собой. Соединенными усилиями добиться чего-н. Усилия партии и рабочего класса привели .

Примеры употребления слова усилие в литературе.

Линкольна и, не позабыв уроков юношеского аболиционизма, в меру своих сил боролся за освобождение негров от рабства: острие сатиры направлено главным образом против демагогии идеологов Юга и в поддержку усилий северян.

Они боролись, сплетаясь в жестокой схватке, и Абрамович судорожным усилием медленно вытягивал себя из лошадиного чрева, пока не освободился до пупка.

Германская военная разведка не жалела усилий, чтобы побольше узнать обо всем, творящемся непосредственно в гавани базы, на стоянках кораблей в аванпорте, в двух сухих и плавучих доках, в секретных лабораториях, на верфях, на аэродромах Эва, Хикэм, Форд, Каноэха, Уилер, в офицерских и матросских клубах Пирл-Харбора и всего острова Оаху, где расположена база.

Благодаря общим усилиям и вгрызшемуся в замок пламени автогена дверь поддалась.

При больших усилиях автокраны раскачивались на подставках, едва не опрокидываясь.

Пленум ЦК КПСС указал, что для выполнения Продовольственной программы работникам агропромышленного комплекса нужно изо дня в день наращивать усилия, трудиться так, чтобы огромные средства, направляемые на решение этой задачи, давали отдачу уже сегодня и еще большую — завтра.

Источник: библиотека Максима Мошкова

Источник

Воздействие на рычаг слово из 6 букв

На этой странице можно узнать ответ для кроссворда или сканворда с заданием «Воздействие на рычаг». У нас нашелся 1 ответ на данный вопрос. Слово, которое послужит решением, состоит из 6 (шесть) букв. Внесите все буквы в соответствующие клетки разгадываемого вами кроссворда и переходите к следующим заданиям. Находите правильные подсказки на кроссворд АиФ, Кодикросс, сканворды в Одноклассниках и Вконтакте. Решайте любые кроссворды в газете и журнале без запинок.

Ответ

Нажмите на слово, чтобы посмотреть альтернативные определения.

Состав слова

первая буква — У; вторая буква — С; третья буква — И; четвёртая буква — Л; пятая буква — И; последняя буква — Е

Другие варианты определения

» Напряжение душевной или физической силы

» Вызывает выделение пота на лбу

» Воздействие, прилагаемое к рычагу

» «Сделать над собой __»

» Напряжение умственных сил

» Еще немного, еще чуть-чуть

» Воздейст., прилагаемое к рычагу

» Неимоверное и титаническое

» Напряжение для достижения

» Физическое или умственное напряжение, необходимое для выполнения задачи

» Нажим с напряжением

» Напряжение физических сил

» Сделать . над собой (заставить себя)

» Что может спровоцировать надсаду

» Что прилагают ради исполнения

» Ну ещё чуть-чуть, ну ещё немножко

» Титаническое напряжение физических сил

» То, что может спровоцировать надсаду

» Его нужно приложить, чтобы сдвинуть дело с мёртвой точки

» Напряжение, которое прилагают для достижения цели

Источник

Воздействие, прилагаемое к рычагу слово из 6 букв

На этой странице можно узнать ответ для кроссворда или сканворда с заданием «Воздействие, прилагаемое к рычагу». У нас нашелся 1 ответ на данный вопрос. Слово, которое послужит решением, состоит из 6 (шесть) букв. Внесите все буквы в соответствующие клетки разгадываемого вами кроссворда и переходите к следующим заданиям. Находите правильные подсказки на кроссворд АиФ, Кодикросс, сканворды в Одноклассниках и Вконтакте. Решайте любые кроссворды в газете и журнале без запинок.

Ответ

Нажмите на слово, чтобы посмотреть альтернативные определения.

Состав слова

первая буква — У; вторая буква — С; третья буква — И; четвёртая буква — Л; пятая буква — И; последняя буква — Е

Другие варианты определения

» Напряжение душевной или физической силы

» Вызывает выделение пота на лбу

» «Сделать над собой __»

» Напряжение умственных сил

» Еще немного, еще чуть-чуть

» Воздейст., прилагаемое к рычагу

» Неимоверное и титаническое

» Напряжение для достижения

» Воздействие на рычаг

» Физическое или умственное напряжение, необходимое для выполнения задачи

» Нажим с напряжением

» Напряжение физических сил

» Сделать . над собой (заставить себя)

» Что может спровоцировать надсаду

» Что прилагают ради исполнения

» Ну ещё чуть-чуть, ну ещё немножко

» Титаническое напряжение физических сил

» То, что может спровоцировать надсаду

» Его нужно приложить, чтобы сдвинуть дело с мёртвой точки

» Напряжение, которое прилагают для достижения цели

Источник

Правило рычага. Формулировка и формула

Рычаг представляет собой один из простых механизмов, который служил и продолжает служить людям для облегчения их физического труда. В статье рассмотрим, что такое рычаг, какие виды его бывают и где они применяются, а также поясним, в чем заключается правило рычага.

Рычаг в физике

Несмотря на то что речь идет о простом механизме, он все же имеет свои составные части. Во-первых, это балка или доска, которая предназначена для воздействия на нее двух противоположных сил. Во-вторых, это опора, которая, с геометрической точки зрения, представляет собой ось вращения, вокруг которой может двигаться балка. В зависимости от расположения опоры под балкой различают три типа рычага, которые будут рассмотрены ниже.

Еще одним важным понятием для любого рычага является «плечо». Под ним понимают часть балки, которая находится между ее концом и опорой при условии, что воздействующие силы приложены к концам балки. Длина плеча играет важную роль при определении условий равновесия рычага.

Рычаг предназначен для преобразования силы в перемещение или, наоборот, перемещения в силу. Другими словами, рассматриваемый простой механизм, используется для перераспределения работы, которую следует выполнить, в пользу приложенной силы или в пользу осуществляемого перемещения. Рисунок ниже показывает пример рычага первого рода.

Когда человечество начало использовать рычаг?

Ответить уверенно на этот вопрос нельзя. Известно, что рычаги с древнейших времен использовались в Месопотамии и Древнем Египте для подъема тар с водой из колодцев и рек.

Единственным письменным свидетельством, которое сохранилось до наших дней, свидетельствующим об использовании рассматриваемого механизма, является всем известный рычаг Архимеда. В работе Плутарха «Параллельные жизни» (100 год до н. э.) говорится, что Архимед в одиночку смог поднять корабль с грузом и пассажирами над поверхностью воды. При этом философ использовал систему блоков и рычагов.

Читайте также:  Во что упаковать подвеску

Если подойти к поставленному в названии пункта вопросу более строго, то можно сказать, что человек пользуется рычагом с момента собственного появления в этом мире, ведь наши предплечья и плечи работают по принципу этого простого механизма.

Понятие о моменте силы

Прежде чем переходить к формулировке правила равновесия рычага, рассмотрим понятие крутящего момента или момента силы. В физике под ним понимают величину, равную произведению плеча силы на саму силу. Математически это записывается так:

Где, F — воздействующая сила, d — плечо силы, которое соответствует расстоянию от точки приложения F до оси вращения. Последний элемент системы, то есть ось вращения, играет принципиальную роль при определении момента M. Без наличия оси вращения нет никакого смысла говорить о действующем моменте силы.

Физический смысл величины M заключается в отражении способности силы F совершить поворот системы вокруг оси. На практике эту способность можно ощутить, если попытаться открутить гайку не гаечным ключом, а руками, или же если постараться открыть дверь не за ручку, а толкая ее вблизи навесных петель.

Во время решения задач момент силы M может приводить как к вращению системы по часовой стрелке, так и против ее хода. В первой случае момент считают отрицательным, во втором — положительным.

Моменты сил и правило рычага

Рассмотрим классический рычаг с двумя плечами, когда опора находится вдали от концов балки. Пример такого механизма изображен ниже.

Мы видим, что когда этот рычаг применяют для совершения физической работы, то на него действует две силы:

  • внешняя сила F, которую прикладывают для выполнения полезной работы;
  • сила R, которая оказывает сопротивление силе F (она выполняет отрицательную работу).

В большинстве случаев сила F создается усилием человека, а сила R представляет собой вес некоторого груза.

Рассматриваемый рычаг будет находиться в равновесии, и перестанет испытывать вращение только тогда, когда сумма действующих на него моментов будет равна нулю. Используя обозначения рисунка выше, и применяя формулу для M, запишем правило равновесия рычага:

Заметим, что момент силы F записан со знаком минус, поскольку он стремится повернуть плечо рычага по часовой стрелке. Остается перенести второй член в правую часть равенства, чтобы записать правило рычага:

Таким образом, равенство моментов силы действия F и силы противодействия R является достаточным условием равновесия рассматриваемого простого механизма.

Кто установил правило равновесия рычага? Этот вопрос отчасти пересекается с рассмотренным выше историческим. Поскольку сохранились только письменные свидетельства научной деятельности Архимеда, связанной с этим механизмом, то именно он в настоящее время считается тем философом, кто установил правило рычага.

Равновесие рассматриваемой системы обеспечивается не только равенством нулю суммы моментов, но также равенством нулю всех действующих сил. Выше были названы лишь две силы (F и R). На самом же деле существует еще сила реакции опоры, направленная против сил F и R. Реакцию опоры момента силы не создает ввиду нулевой длины ее плеча.

Выигрыш и проигрыш в использовании рычага

Следует четко понимать, что при использовании рычага сохраняется полная энергия системы. Чтобы поднять груз на некоторую высоту, необходимо совершить определенную работу. Поскольку в формуле правила рычага стоит произведение силы на длину плеча, то отмеченную работу можно выполнить как с помощью большей силы, так и с помощью меньшей. Однако в первом случае необходимо будет переместить плечо рычага в вертикальном направлении на малую величину, во втором же случае — на большую величину. Это и есть выигрыш и проигрыш в использовании рычага.

Заметим, что в формуле правила рычага стоят значения моментов. Никакого отношения к работе они не имеют. Момент силы выполняет работу только тогда, когда система за счет его действия поворачивается вокруг оси на некоторый угол.

Виды рычагов

Выше уже упоминалось, что все рычаги относятся к одному из трех типов. В основе классификации лежит относительное расположение сил R, F и опоры. Охарактеризуем все три типа:

  1. Рычаг 1-го типа, или рода, был показан выше. Опора расположена в нем между силами R и F. В зависимости от длины плеч dR и dF его можно использовать как для выигрыша в пути, так и для выигрыша в силе. Примером этого типа рычага являются ножницы, весы, гвоздодер.
  2. Рычаг 2-го рода предполагает, что сила R приложена между опорой и силой F. В таком случае получается выигрыш только в силе. Примерами таких рычагов в быту являются орехокол или ручная тачка.
  3. Рычаг 3-го рода предполагает, что сила F расположена между опорой и грузом R. В этом случае выигрыш возможен только в пути. Использование лопаты, циркуля или удочки для рыбалки — это яркие примеры рычага 3-го рода в работе.

Простой механизм блок

Рассматривая правила рычага, полезно сказать несколько слов о еще одном простом механизме — блоке. Представляет он собой обычный цилиндр с осью вращения, который имеет углубление по периметру своей боковой поверхности. Пример использования неподвижного блока показан ниже.

Как видно, выигрыша в силе и пути не происходит, однако неподвижный блок позволяет изменить направление воздействующей силы F.

Применение правила равновесия рычага к блоку производят, когда требуется рассчитать выигрыш в силе при использовании подвижных блоков. Один такой блок позволяет выиграть в 2 раза в силе и во столько же раз проиграть в пути.

Решение задачи

Ручная тачка сделана таким образом, что центр массы груза в ней находится на расстоянии 1/3*l от колеса, где l — длина тачки. Какой массы груз может переместить с помощью тачки человек, если известно, что он может приложить максимальную вертикальную силу F = 200 Н.

Воспользуемся правилом рычага, получим:

m = 3*F/g = 3*200/9,81 ≈ 61 кг.

Отметим, что сила F = 200 Н равна весу тела массой всего 20,4 кг. Таким образом, данная ручная тачка позволяет выиграть в 3 раза в силе.

Источник

Рычаг в физике — виды, формулы и определения с примерами

Содержание:

Рычаг:

Взаимодействие может происходить через промежуточные тела.

Взаимодействие может происходить не только при непосредственном контакте, но и при наличии промежуточных тел. Таких примеров можно привести большое количество. Так, если мастер забивает гвоздь в углублении, он ставит на головку гвоздя металлический стержень и по нему ударяет молотком (рис. 58). Молоток действует на стержень, который, в свою очередь, уже действует на гвоздь.

Можно ли изменять значения силы

Если взаимодействие между телами происходит через промежуточные тела, то можно изменять силы взаимодействия между ними. Оно может изменить как направление силы, так и ее значение. Одним из примеров такого использования промежуточных тел для взаимодействия между телами является рычаг. В быту и на производстве можно наблюдать много таких примеров.

Часто можно видеть, как тяжелый предмет поднимают или перемещают с помощью металлического стержня (рис. 59). В этом случае стержень называют рычагом.

Что такое рычаг

Рычагом называют жесткий стержень, имеющий ось вращения.

Ось вращения рычага может проходить через один из его концов или посередине рычага — между точками приложения сил.

Под действием нескольких сил рычаг может вращаться или быть неподвижным. В последнем случае говорят, что рычаг уравновешен.

Как уравновесить рычаг

Выясним, при каких условиях рычаг, на который действует несколько сил, будет уравновешен.

Для этого возьмем деревянную планку с отверстием посередине и поместим ее на оси, закрепленной в штативе (рис. 60). Это и будет рычаг. Слева от оси вращения повесим в точке А на расстоянии 10 см гирьку массой 102 г. В этом случае говорят, что точка А является точкой действия силы 1 Н. Под действием этой силы рычаг начнет вращаться против часовой стрелки. Для того чтобы он не вращался и оставался в горизонтальном положении, на другом конце рычага найдем такую точку В, при закреплении в которой гирьки массой 102 г рычаг перестанет вращаться. Измерив расстояние ОВ, увидим, что оно также равно 10 см. Таким образом, OA = ОВ, если Fl = F2. Если направление действия силы перпендикулярно к направлению оси вращения рычага, то расстояние от его оси вращения к направлению действия силы называют плечом силы.

Если силы, действующие на рычаг, находящийся в равновесии, равны, то равны и плечи этих сил.

Читайте также:  Как узнать передаточное число редуктора на бмв е34

Если левую гирьку оставить прикрепленной в точке А, а в точке В подвесить две такие гирьки массой по 102 г каждая, то равновесие рычага нарушится и он начнет вращаться. Достигнуть равновесия в этом случае можно, изменяя положение точки подвеса двух гирек. Так можно установить новое положение точки подвеса С. Измерив оба плеча, увидим, что правое плечо ОС в два раза меньше левого плеча OA.

В случае равновесия рычага плечо большей силы меньше, и наоборот, плечо меньшей силы больше.

Используя свойства пропорции, получаем

В уравновешенном рычаге плечи сил обратно пропорциональны силам.

Что такое момент силы

Физическую величину, равную произведению силы на плечо, называют моментом силы. Единицей измерения момента силы является ньютон-метр (Н-м).

Сформулируем условие равновесия рычага в общем виде.

Рычаг пребывает в равновесии, если момент силы, вращающий рычаг по часовой стрелке, равен моменту силы, вращающему рычаг против часовой стрелки.

Конструктивно рычаг может быть таким, что силы будут действовать по одну сторону от оси вращения. Условие равновесия для него будет такое же, как и для рычага, рассмотренного выше.

Используя условие равновесия рычага, можно рассчитывать силы, действующие на него, или плечи этих сил.

Пример:

На одно из плеч рычага длиной 30 см действует сила 2 Н. Какая сила должна подействовать на другое плечо этого рычага длиной 15 см, чтобы он оставался неподвижным.

Дано:

Решение

При условии равновесия рычага Отсюда

Ответ. На второе плечо рычага должна подействовать сила 4 Н.

Где используют рычаги

Рычаг известен человеку с того времени, когда человек взял палку, чтобы сбить плод с дерева. И вся следующая история человечества связана с использованием рычагов. Так, исследования историков показывают, что при строительстве пирамид древние египтяне использовали рычаги для поднятия тяжелых блоков на значительную высоту (рис. 61). Историкам науки известно, что древние римляне использовали рычаги для создания различных строительных и военных машин (рис. 62). Значительный вклад в теорию рычагов внес древнегреческий ученый и изобретатель Архимед. Сконструированные им машины помогали оборонять греческие города от захватчиков, подавать воду для орошения полей (рис. 63), перемещать значительные грузы на стройках, выполнять большое количество других подобных работ.

Рычаги широко используются и в современной технике, в самых разнообразных машинах.

Рычагом является стрела подъемного крана, используемого в строительстве. Она дает возможность получить выигрыш в силе или расстоянии. Момент силы, действующей на конце стрелы при подъеме груза, уравновешивается моментом противовеса, находящегося на противоположном конце стрелы.

Принцип рычага используется во многих устройствах и инструментах, которыми мы пользуемся ежедневно. На рисунке 64 изображены некоторые из них. На них легко найти части, исполняющие роль рычагов.

Рычаги можно найти и в живых организмах. По принципу рычага работают руки человека (рис. 65), ноги, голова.

Архимед (около 287-212 гг. до н. э.) — известный древнегреческий ученый. Научные труды касаются математики, механики, физики и астрономии. Автор многих изобретений и открытий, в том числе машины для орошения полей, винта, рычагов, блоков, военных метательных машин и пр. В его труде «О плавающих телах» изложены основы гидростатики.

Условие равновесия рычага и момент силы

Как уже отмечалось, рычаг — твёрдое тело, которое может вращаться около неподвижной опоры. Его применяют для изменения направления и значения силы, например для уравновешивания большой силы малой. Рычаг имеет следующие характеристики

Точка приложения силы — это точка, в которой на рычаг действует другое тело.

Ось вращения — прямая, проходящая через неподвижную точку опоры рычага О, и вокруг которой он может свободно вращаться. Рассмотрим случай, когда ось вращения расположена между точками приложения сил и .

Линия действия силы — это прямая, вдоль которой направлена сила.

Плечо силы — кратчайшее расстояние от оси вращения тела О до линии действия силы. Плечо силы обозначается буквой d. Единицей плеча силы в СИ является один метр (1 м).

Опыт. Возьмём рычаг, подобный изображённому на рис. 203. На расстоянии 10 см от оси вращения подвесим к нему 6 грузиков, каждый массой по 100 г. Чтобы уравновесить рычаг двумя такими же грузиками, нам придётся их подвесить с другой стороны рычага, но на расстоянии 30 см.

Следовательно, для того чтобы рычаг находился в равновесии, нужно к длинному плечу приложить силу, во столько раз меньшую, во сколько раз его длина больше длины короткого плеча. Такое правило рычага описывают формулой обратно пропорциональной зависимости: ,

где и — силы, действующие на рычаг; и — плечи соответствующих сил. Поэтому правило (условие) равновесия рычага можно сформулировать так.

Рычаг находится в равновесии тогда, когда значения сил, действующих на него, обратно пропорциональны плечам этих сил.

С тех пор, когда Архимед установил правило рычага, оно просуществовало в первозданном виде почти 1900 лет. И лишь в 1687 г. французский учёный П. Вариньон придал ему более общую форму, используя понятие момента силы.

Момент силы М— это физическая величина, значение которой опре-Г деляется произведением модуля силы F, вращающей тело, и ее плеча d : .

Единицей момента силы в СИ является один ньютон-метр (1 Н • м), равный моменту силы 1 Н, приложенной к плечу 1 м.

Докажем, что рычаг находится в равновесии под действием двух сил, если значение момента М1 силы, вращающей рычаг против часовой стрелки, равно значению момента М2 силы, вращающей его по часовой стрелке, т.е.:

Из правша рычага на основе свойства пропорции вытекает

равенство:. Но — момент силы, вращающей рычаг против часовой стрелки (рис. 202),— момент силы, вращающей рычаг по часовой стрелке. Таким образом: ,

что и требовалось доказать. Итак, правило (условие) равновесия рычага можно ещё сформулировать так.

Рычаг находится в равновесии под действием двух сил, если значение момента силы, вращающей рычаг против часовой стрелки, равно значению момента силы, вращающей его по часовой стрелке.

Момент силы — важная физическая величина, она характеризует действие силы, показывает, что оно зависит и от модуля силы, и от её плеча. Например, мы знаем, что действие силы на дверь зависит и от модуля силы, и оттого, где приложена сила: дверь тем легче повернуть, чем дальше от оси вращения приложена сила, действующая на неё; гайку легче открутить длинным гаечным ключом, чем коротким; ведро тем легче вытянуть из колодца, чем длиннее ручка ворота.

Основы статики и равновесие рычага

Еще в давние времена люди использовали обычную палку в качестве рычага, выигрывая этим в силе. На рисунке 2.35 показано, как с помощью рычага можно поднять по ступенькам большие каменные глыбы, например для строительства пирамид.

Читайте также:  Bonfiglioli мотор редукторы инструкция


В древних книгах по механике, написанных учеными Греции и Египта, главным образом рассматривались вопросы статики. Важнейшие открытия в этой области принадлежали великому греческому философу Аристотелю, который и дал название «механика» науке, изучающей простейшие движения материальных тел, находящихся в природе или создающихся людьми в процессе их деятельности.

Ученые уже тогда понимали значение статики как одной из основных составляющих фундамента механики. Дальнейшее развитие науки и, особенно, техники подтвердило правильность их вывода: действие огромного количества £ механизмов и машин базируется на законах о равновесии сил.

Аристотель (384-322 до н. э.) — один из известнейших ученых Древней Греции. Изучал вопросы ста-тики, разработал классификацию механических движений, сформулировал закон прямолинейного распространения света, объяснил природу атмосферных явлений и др.

Основы науки о равновесии были заложены еще Архимедом. Именно он ввел в физику такое понятие, как центр тяжести и момент силы относительно точки и оси, определил положение центра тяжести для многих тел и фигур, математически обосновал законы рычага, сформулировал правила приложения параллельных сил.

В своей работе «О равновесии плоских фигур» Архимед опирался на положения, которые считал само собой разумеющимися:

Архимед (287-212 до н. э.) — древнегреческий физик, математик, исследователь, инженер. Изучал условия равновесия тел, простые механизмы, плавание тел и др. Установил, что соотношение длины любой окружности к ее диаметру (число ) колеблется между и (3,142 — 3,140); на то время это были точные данные.

  1. одинаковые грузы, приложенные к одинаковым плечам рычага, уравновешиваются (рис. 2.36, а);
  2. одинаковые грузы, приложенные к неодинаковым плечам рычага, не находятся в равновесии; груз, приложенный к более длинному рычагу, падает (рис. 2.36, б);
  3. если грузы, подвешенные к неодинаковым плечам рычага, уравновешиваются и к одному из них что-либо прибавить, то равновесие нарушится и этот груз будет падать (рис. 2.36, в);
  4. если при тех же условиях, что в предыдущем случае, один груз уменьшить, то равновесие нарушится, и тогда другой груз будет падать (рис. 2.36, г).

Рычаг находится в равновесии, если плечи сил обратно пропорциональны значениям сил, действующих на него

Из этих положений Архимед сделал вывод: грузы пребывают в равновесии, когда плечи рычага обратно пропорциональны грузам:

Условия равновесия тел. Устойчивое и неустойчивое равновесие

Равновесие — состояние тела, при котором в рассматриваемой системе отсчета отсутствуют перемещения каких-либо его точек под действием приложенных к нему сил.

Вспомним, что момент силы относительно какой-либо оси равен произведению модуля силы на ее плечо: М = Fl. Плечом силы l называется кратчайшее расстояние от оси вращения до линии действия данной силы. Момент силы считается положительным, если сила стремится повернуть тело по часовой стрелке, и отрицательным, если такое действие противоположно. Для равновесия тел необходимы два условия: 1) геометрическая сумма приложенных к телу сил равна нулю:

2) алгебраическая сумма моментов сил относительно любой неподвижной оси равна нулю:

Момент силы: М = Fl.

Условия равновесия тел:


Равновесие устойчивое, если при незначительном смещении тело вновь возвращается в положение равновесия (рис. 2.37).

При неустойчивом равновесии незначительное смещение тела вызывает в дальнейшем значительное удаление его от исходного положения (рис. 2.38).

Равновесие тела может быть устойчивым, неустойчивым и безразличным.

Если любые смещения тела не нарушают его состояния равновесия, то можно говорить о безразличном равновесии (рис. 2.39).

Примеры решения задач на равновесие рычага

Рассмотрим примеры решения задач статики.

Пример №1

Метровая линейка, весом которой можно пренебречь, положена средним делением на подставку и нагружена гирями (рис. 2.40). Какого направления и значения сила должна быть приложена на делении 1 м для того, чтобы линейка находилась в равновесии? Какой будет сила реакции опоры, если приложить эту силу?

Решение:

Выполняем рисунок в соответствии с условием задачи (рис. 2.41), указав силы и их плечи. Линейка под действием моментов сил может вращаться вокруг неподвижной оси О, которая проходит через точку О. Будем считать положительными все моменты, вращающие систему по часовой стрелке. В задаче это момент силы Отрицательные моменты создают силы

Для упрощения вычислений значение ускорения свободного падения будем считать равным 10

Предположим, что для равновесия системы на конце линейки 1 м должна быть приложена сила направленная вертикально вверх. Если же мы ошиблись в выборе направления этой силы, то в ответе значение силы получится со знаком «-«. Для решения задачи воспользуемся вторым условием равновесия тела:

Ответ:= 3,2H, направление силы выбрано правильно.

Пример №2

Метровая линейка, весом которой можно пренебречь, положена крайними точками на две опоры и нагружена гирями, как в предыдущей задаче. Нужно определить силы реакции опор (рис. 2.42).

Решение:

Чтобы определить силу реакции опоры можно воспользоваться таким приемом. Если опору забрать, то для равновесия системы на отметке 1 м необходимо приложить силу, направленную вертикально вверх. Иначе система будет вращаться вокруг оси в точке О линейки по часовой стрелке. Теперь можно применить правило моментов:

Чтобы определить силу реакции опоры действуем аналогично. Теперь система будет вращаться вокруг оси против часовой стрелки, когда она проходит через отметку 1 м:

Чтобы найти силы реакции опор, можно воспользоваться правилом сложения параллельных сил. Им же можно пользоваться и для контроля найденных значений.

Ответ: = 3,9 H; =7,1 Н.


Оригинальный метод решения задач статики был предложен Симоном Сте-вином (1548-1620). Для случаев равновесия тел на наклонной плоскости он доказал, что массы тел соотносятся как длины плоскостей, которые их образуют (рис. 2.43):

Он же установил принцип сложения статических сил (треугольник сил): три силы, действующие на одну точку, находятся в равновесии тогда, когда они бывают параллельны и пропорциональны трем сторонам плоского треугольника (рис. 2.44). Приведем пример решения одной из задач статики с применением треугольника сил.

Пример №3

На кронштейне висит лампа весом 4 Н. Найти значение сил упругости в деталях ОА и ОВ.
Дано:

Р = 4 Н
— ?

Решение:

Выбираем масштаб построения треугольника. Пусть 1 см на рисунке соответствует значению силы 1 Н. Теперь строим сторону треугольника
А’В’, длина которой известна: 4 см = 4 Н. Эта сторона параллельна направлению силы тяжести, действующей на лампу. Из точки А’ проводим линию, параллельную направлению действия силы в подвесе ОА, а потом из точки В’ — параллельную направлению действия силы в упоре ОВ. На пересечении линий находится точка О’. Таким образом мы получили замкнутый треугольник сил. Зная масштаб, при помощи линейки измеряем значения силы упругости в подвесе ОА (О’А’) и силы реакции в упоре ОВ (О’В’).

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Блоки в физике
  • Движение тела под действием нескольких сил
  • Наклонная плоскость в физике
  • Давление газов и жидкостей
  • Равнодействующая сила и движение тела под действием нескольких сил
  • Сила давления в физике и единицы давления
  • Механическое давление в физике
  • Столкновения в физике

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Поделиться с друзьями
АвтоМотоВики